14 research outputs found

    Left Ventricular Myocardial Dysfunction Evaluation in Thalassemia Patients Using Echocardiographic Radiomic Features and Machine Learning Algorithms.

    Get PDF
    Heart failure caused by iron deposits in the myocardium is the primary cause of mortality in beta-thalassemia major patients. Cardiac magnetic resonance imaging (CMRI) T2* is the primary screening technique used to detect myocardial iron overload, but inherently bears some limitations. In this study, we aimed to differentiate beta-thalassemia major patients with myocardial iron overload from those without myocardial iron overload (detected by T2*CMRI) based on radiomic features extracted from echocardiography images and machine learning (ML) in patients with normal left ventricular ejection fraction (LVEF > 55%) in echocardiography. Out of 91 cases, 44 patients with thalassemia major with normal LVEF (> 55%) and T2* ≀ 20 ms and 47 people with LVEF > 55% and T2* > 20 ms as the control group were included in the study. Radiomic features were extracted for each end-systolic (ES) and end-diastolic (ED) image. Then, three feature selection (FS) methods and six different classifiers were used. The models were evaluated using various metrics, including the area under the ROC curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE). Maximum relevance-minimum redundancy-eXtreme gradient boosting (MRMR-XGB) (AUC = 0.73, ACC = 0.73, SPE = 0.73, SEN = 0.73), ANOVA-MLP (AUC = 0.69, ACC = 0.69, SPE = 0.56, SEN = 0.83), and recursive feature elimination-K-nearest neighbors (RFE-KNN) (AUC = 0.65, ACC = 0.65, SPE = 0.64, SEN = 0.65) were the best models in ED, ES, and ED&ES datasets. Using radiomic features extracted from echocardiographic images and ML, it is feasible to predict cardiac problems caused by iron overload

    Polymorphism of rs599839 in the PSRC1 gene is associated with coronary artery disease in an Iranian population

    Get PDF
    Introduction: Coronary artery disease (CAD) is the leading health complication worldwide because of its high prevalence and mortality. The association between CAD susceptibility and the rs599839 (C/T) polymorphism in the human proline and serine-rich coiled-coil (PSRC1) was reported in a genome-wide association study. To validate this association, we performed this case-control study to genotype the 1p13.3 (rs599839) locus in a sample of the Iranian population with CAD (stenosis≄70% in≄1 coronary artery). Methods: We performed an association analysis with PCR and Sanger sequencing of rs599839 (C/T) polymorphism and CAD risk in 280 CAD patients and 287 healthy controls defined as a coronary calcium score of zero and no noncalcified plaques in coronary computed tomography angiography. SPSS, version 16.0, was applied for statistical analysis. Results: The rs599839 (C/T) locus showed a significant association with CAD (P value<0.001). TT and CT genotypes were associated with CAD (P value<0.001). Furthermore, the dominant status (TT+CT vs. CC) was associated with an increased risk of CAD (OR, 9.14; 95% CI, 3.77 to 22.15; and P value<0.001). Conclusion: The study findings indicate strong evidence for rs599839 (C/T) association with CAD risk

    Federated Learning on Heterogenous Data using Chest CT

    Full text link
    Large data have accelerated advances in AI. While it is well known that population differences from genetics, sex, race, diet, and various environmental factors contribute significantly to disease, AI studies in medicine have largely focused on locoregional patient cohorts with less diverse data sources. Such limitation stems from barriers to large-scale data share in medicine and ethical concerns over data privacy. Federated learning (FL) is one potential pathway for AI development that enables learning across hospitals without data share. In this study, we show the results of various FL strategies on one of the largest and most diverse COVID-19 chest CT datasets: 21 participating hospitals across five continents that comprise >10,000 patients with >1 million images. We present three techniques: Fed Averaging (FedAvg), Incremental Institutional Learning (IIL), and Cyclical Incremental Institutional Learning (CIIL). We also propose an FL strategy that leverages synthetically generated data to overcome class imbalances and data size disparities across centers. We show that FL can achieve comparable performance to Centralized Data Sharing (CDS) while maintaining high performance across sites with small, underrepresented data. We investigate the strengths and weaknesses for all technical approaches on this heterogeneous dataset including the robustness to non-Independent and identically distributed (non-IID) diversity of data. We also describe the sources of data heterogeneity such as age, sex, and site locations in the context of FL and show how even among the correctly labeled populations, disparities can arise due to these biases

    Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT

    Get PDF
    The Coronavirus disease 2019 (COVID-19) presents open questions in how we clinically diagnose and assess disease course. Recently, chest computed tomography (CT) has shown utility for COVID-19 diagnosis. In this study, we developed Deep COVID DeteCT (DCD), a deep learning convolutional neural network (CNN) that uses the entire chest CT volume to automatically predict COVID-19 (COVID+) from non-COVID-19 (COVID−) pneumonia and normal controls. We discuss training strategies and differences in performance across 13 international institutions and 8 countries. The inclusion of non-China sites in training significantly improved classification performance with area under the curve (AUCs) and accuracies above 0.8 on most test sites. Furthermore, using available follow-up scans, we investigate methods to track patient disease course and predict prognosis

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Arrhythmogenic left ventricular cardiomyopathy caused by a novel likely pathogenic DSP mutation, p.K1165Rfs*8, in a family with sudden cardiac death

    No full text
    Abstract Objective We conducted an investigation into the clinical and molecular characteristics of Arrhythmogenic left ventricular cardiomyopathy (ALVC) caused by a novel likely pathogenic mutation in an Iranian pedigree with sudden cardiac death (SCD). Background ALVC is a genetically inherited myocardial disease characterized by the substitution of fibro-fatty tissue in the left ventricular myocardium, predominantly inherited in an autosomal dominant pattern and is commonly associated with genes involved in encoding desmosomal proteins, specifically Desmoplakin (DSP). Methods The patient and available family members underwent a comprehensive clinical assessment, including Cardiac magnetic resonance (CMR) imaging, along with Whole-exome sequencing (WES). The identified variant was confirmed and segregated by Polymerase chain reaction (PCR) and Sanger sequencing in the family members. Results A novel likely pathogenic heterozygous variant, DSP (NM_004415.4), c.3492_3498del, p.K1165Rfs*8 was discovered in the proband. This variant is likely to be the primary reason for ALVC in this specific family. This variant was confirmed by Sanger sequencing and segregated in other affected members of the family. Conclusion We identified a novel likely pathogenic variant in the DSP gene, which has been identified as the cause of ALVC in an Iranian family. Our investigation underscores the importance of genetic testing, specifically WES, for individuals suspected of ALVC and have a family history of SCD

    Multimodality imaging in the diagnostic approach to a patient with carcinoid heart disease involving four heart valves

    No full text
    Abstract Carcinoid heart disease is a rare condition that occurs in less than half of patients with carcinoid syndrome. The disease mainly affects right‐sided heart valves; however, in 5%–10%, it can also involve left‐sided valves. This case illustrates the most complicated form of the disease involving four heart valves

    Non-contrast Cine Cardiac Magnetic Resonance image radiomics features and machine learning algorithms for myocardial infarction detection

    Get PDF
    Objective: Robust differentiation between infarcted and normal tissue is important for clinical diagnosis and precision medicine. The aim of this work is to investigate the radiomic features and to develop a machine learning algorithm for the differentiation of myocardial infarction (MI) and viable tissues/normal cases in the left ventricular myocardium on non-contrast Cine Cardiac Magnetic Resonance (Cine-CMR) images.Methods: Seventy-two patients (52 with MI and 20 healthy control patients) were enrolled in this study. MR imaging was performed on a 1.5 T MRI using the following parameters: TR = 43.35 ms, TE = 1.22 ms, flip angle = 65°, temporal resolution of 30-40 ms. N4 bias field correction algorithm was applied to correct the inhomogeneity of images. All images were segmented and verified simultaneously by two cardiac imaging experts in consensus. Subsequently, features extraction was performed within the whole left ventricular myocardium (3D volume) in end-diastolic volume phase. Re-sampling to 1 × 1 × 1 mm3 voxels was performed for MR images. All intensities within the VOI of MR images were discretized to 64 bins. Radiomic features were normalized to obtain Z-scores, followed by Student's t-test statistical analysis for comparison. A p-value 0.80). Ten different machine learning algorithms were used for classification and different metrics used for evaluation and various parameters used for models' evaluation.Results: In univariate analysis, the highest area under the curve (AUC) of receiver operating characteristic (ROC) value was achieved for the Maximum 2D diameter slice (M2DS) shape feature (AUC = 0.88, q-value = 1.02E-7), while the average of univariate AUCs was 0.62 ± 0.08. In multivariate analysis, Logistic Regression (AUC = 0.93 ± 0.03, Accuracy = 0.86 ± 0.05, Recall = 0.87 ± 0.1, Precision = 0.93 ± 0.03 and F1 Score = 0.90 ± 0.04) and SVM (AUC = 0.92 ± 0.05, Accuracy = 0.85 ± 0.04, Recall = 0.92 ± 0.01, Precision = 0.88 ± 0.04 and F1 Score = 0.90 ± 0.02) yielded optimal performance as the best machine learning algorithm for this radiomics analysis.Conclusion: This study demonstrated that using radiomics analysis on non-contrast Cine-CMR images enables to accurately detect MI, which could potentially be used as an alternative diagnostic method for Late Gadolinium Enhancement Cardiac Magnetic Resonance (LGE-CMR).</p
    corecore